СПБГМТУ…

Отчет
О ВЫПОЛНЕНИИ ЛАБОРАТОРНЫХ РАБОТ ПО КУРСУ «СТРУКТУРЫ И АЛГОРИТМЫ»
Выполнил:
студент группы 12ВТ1
Безюк
Григорий Кириллович
Спб,2006
Содержание:

1. Базовые классы

2. Лабораторная работа 1: класс графов + генерация случайного графа

3. Лабораторная работа 2: генерация остовного дерева посредством поиска в глубину

4. Лабораторная работа 3: рекурсивный поиск гамильтонова пути

5. Лабораторная работа 4: алгоритм Краскла

Базовые Классы:

Класс Списка
#include <iostream>

using namespace std;

struct listnode{

int data;

listnode *prv,*nxt;

};

class SLIST{

private:

listnode *fst,*lst;

int length;

int deleteelement(listnode *node);

public:

SLIST():fst(NULL),lst(NULL),length(0){}

~SLIST();

void output();

void output(ostream &ofstr);

void add2end(int);

void add2beg(int);

void addwsort(int);

int getelement(int);

listnode *findelement(int);

int deleteelement(int);

int deleteelementNo(int);

inline int getlength(){return length;}

void absorb(SLIST &arg);

};

SLIST::~SLIST(){

listnode *tmp;

while(lst){

tmp=lst;

lst=lst->prv;

delete tmp;

}

}

void SLIST::output(){

listnode *tmp=fst;

if(!tmp){

cout<<"List is empty!\n";

return;

}

while(tmp){

cout<<tmp->data<<' ';

tmp=tmp->nxt;

}

cout<<endl;

}

void SLIST::output(ostream &ofstr){

listnode *tmp=fst;

while(tmp){

ofstr<<(tmp->data)<<' ';

tmp=tmp->nxt;

}

ofstr<<-1<<endl;

}

void SLIST::add2beg(int a){

listnode *tmp=new listnode;

tmp->prv=NULL; tmp->nxt=fst; tmp->data=a;

if(!fst) lst=tmp;

else fst->prv=tmp;

fst=tmp;

length++;

}

void SLIST::add2end(int a){

listnode *tmp=new listnode;

tmp->nxt=NULL; tmp->prv=lst; tmp->data=a;

if(!fst) fst=tmp;

else lst->nxt=tmp;

lst=tmp;

length++;

}

void SLIST::addwsort(int a){

if(!fst){ add2beg(a); return; }

if(fst->data>a){ add2beg(a); return; }

if(lst->data<a){ add2end(a); return; }

listnode *seek=fst->nxt;

while(seek->data<a) seek=seek->nxt;

listnode *tmp=new listnode;

tmp->data=a; tmp->nxt=seek; tmp->prv=seek->prv;

seek->prv->nxt=tmp; seek->prv=tmp;

}

int SLIST::getelement(int i){

listnode *tmp=fst;

for(int j=0;j<i;j++)

if(!tmp->nxt) return -2; else tmp=tmp->nxt;

return tmp->data;

}

listnode* SLIST::findelement(int a){

listnode *tmp=fst;

while(tmp){

if(tmp->data==a) return tmp;

tmp=tmp->nxt;

}

return NULL;

}

int SLIST::deleteelement(int i){

return deleteelement(findelement(i));

}

int SLIST::deleteelementNo(int i){

if(i>=length) return -2;

listnode *tmp=fst;

for(int j=0;j<i;j++)

tmp=tmp->nxt;

//now tmp points to deletable element

return deleteelement(tmp);

}

int SLIST::deleteelement(listnode *node){

if(node->nxt)//if element is not the last

node->nxt->prv=node->prv;

else lst=node->prv;

if(node->prv)//if element is not the first

node->prv->nxt=node->nxt;

else fst=node->nxt;

int tmp=node->data;

delete node;

 length--;

return tmp;

}

void SLIST::absorb(SLIST &arg){

listnode *tmp=arg.fst;

while(tmp){

add2end(tmp->data);

listnode *t=tmp;

tmp=tmp->nxt;

delete t;

}

arg.fst=NULL;

arg.lst=NULL;

}
Базовые Классы:

Класс Очереди
#include <iostream>

using namespace std;

struct querynode{

int data;

querynode *nxt;

querynode *prv;

};

class SQUERY{

private:

querynode *fst,*lst;

int length;

public:

SQUERY():fst(NULL),lst(NULL),length(0){}

~SQUERY();

inline int getlength(){return length;}

void output();

void add(int);

int get();

};

SQUERY::~SQUERY(){

querynode *tmp;

while(lst){

tmp=lst;

lst=lst->prv;

delete tmp;

}

}

void SQUERY::output(){

querynode *tmp=fst;

if(!tmp){

cout<<"Query is empty!\n";

return;

}

while(tmp){

cout<<tmp->data<<' ';

tmp=tmp->nxt;

}

cout<<endl;

}

void SQUERY::add(int a){

querynode *tmp=new querynode;

tmp->prv=NULL; tmp->nxt=fst; tmp->data=a;

if(!fst) lst=tmp;

else fst->prv=tmp;

fst=tmp;

length++;

}

int SQUERY::get(){

if(!fst){

cout<<"Query is empty! Can't get =)\n";

return -2;

}

querynode *tmp=lst;

lst=lst->prv;

int a=tmp->data;

delete tmp;

lst->nxt=NULL;

length--;

return a;

}

Базовые Классы:

Класс Стэка
#include <iostream>

using namespace std;

struct stacknode{

int data;

stacknode *prv;

};

class SSTACK{

private:

stacknode *top;

int length;

public:

SSTACK():top(NULL),length(0){}

~SSTACK(){free();}

void free();

void output();

void push(int);

int pop();

inline int getlength(){return length;}

int gettop(){if(top) return top->data; else return -1;}

bool is_empty(){return !top;}

};

void SSTACK::free(){

stacknode *tmp;

while(top){

tmp=top;

top=top->prv;

delete tmp;

}

}

void SSTACK::output(){

stacknode *tmp=top;

if(!top){

cout<<"Stack is empty!\n";

return;

}

cout<<"Stack content in order from top to bottom: ";

while(tmp){

cout<<tmp->data<<' ';

tmp=tmp->prv;

}

cout<<endl;

}

void SSTACK::push(int a){

stacknode *tmp=new stacknode;

tmp->data=a;

tmp->prv=top;

top=tmp;

length++;

}

int SSTACK::pop(){

if(!top){

cout<<"Stack is empty! Can`t pop =)";

return -2;

}

int a=top->data;

stacknode *tmp=top;

top=top->prv;

delete tmp;

length--;

return a;

}

Базовые Классы:

Класс графов
#include "sstack.h"

#include "slist.h"

#include "squery.h"

#include <fstream>

#include <cstdlib>

#include <ctime>

#include <iomanip>

using namespace std;

class SGRAPH{

private:

int NumOfNodes;

SLIST *AdjacencyLists;

void destroy(){if(NumOfNodes){delete[] AdjacencyLists; NumOfNodes=0;}}

void gamilt(int k);

int gamiltV0;

int *gamiltAnsw;

bool *gamiltMarked;

public:

SGRAPH():NumOfNodes(0),AdjacencyLists(NULL){srand((unsigned)time(NULL));}

~SGRAPH(){destroy();}

void input();

void input(const char *filename);

void output();

void output(const char *filename);

void random(int non,int nob);

void depthOstov(int v0);

void Gamilton(int v0);

void Cruscle();

};

void SGRAPH::input(){

destroy();

cout<<"Input number of graph nodes: ";

cin>>NumOfNodes;

if(NumOfNodes<=0){

cout<<"Wrong number inputed!\n";

NumOfNodes=0;

return;

}

AdjacencyLists=new SLIST[NumOfNodes];

cout<<"For each node input the adjacency list (use -1 to finish node list)\n";

for(int i=0;i<NumOfNodes;i++){

cout<<"Node "<<i<<": ";

int tmp;

cin>>tmp;

while(tmp!=-1){

AdjacencyLists[i].add2end(tmp);

cin>>tmp;

}

}

}

void SGRAPH::output(){

if(!NumOfNodes){

cout<<"Graph is empty!\n";

return;

}

cout<<"Graph contains "<<NumOfNodes<<" nodes. Adjacency lists follows below:\n";

for(int i=0;i<NumOfNodes;i++){

cout<<"Node "<<i<<": ";

AdjacencyLists[i].output();

}

}

void SGRAPH::output(const char *filename){

if(!NumOfNodes){

cout<<"Graph is empty! Nothing to save to file!\n";

return;

}

ofstream outpfile(filename);

if(!outpfile.is_open()){

cout<<"Error opening file!\n";

return;

}

outpfile<<NumOfNodes<<endl;

for(int i=0;i<NumOfNodes;i++){

AdjacencyLists[i].output(outpfile);

}

}

void SGRAPH::input(const char *filename){

destroy();

ifstream inpfile(filename);

if(!inpfile.is_open()){

cout<<"Error opening file! \n";

return;

}

inpfile>>NumOfNodes;

if(NumOfNodes<=0){

cout<<"Wrong number of nodes!\n";

NumOfNodes=0;

return;

}

AdjacencyLists=new SLIST[NumOfNodes];

for(int i=0;i<NumOfNodes;i++){

int tmp;

inpfile>>tmp;

while(tmp!=-1){

AdjacencyLists[i].add2end(tmp);

inpfile>>tmp;

}

}

}

Генерация случайного графа
void SGRAPH::random(int non,int nob){

destroy();

if(nob>non*(non-1)/2){

cout<<"Too much branches asked to be created!\n";

return;

}

NumOfNodes=non;

if(NumOfNodes<=0){

cout<<"Wrong number of nodes!\n";

NumOfNodes=0;

return;

}

AdjacencyLists=new SLIST[NumOfNodes];

int branche[2]; bool alreadyexists;

for(int i=0;i<nob;i++){

do{

branche[0]=rand()%non;

branche[1]=rand()%non;

alreadyexists=AdjacencyLists[branche[0]].findelement(branche[1]);

}while(branche[0]==branche[1]||alreadyexists);
//preventing selfloops and repeating branches creation

AdjacencyLists[branche[0]].addwsort(branche[1]);

AdjacencyLists[branche[1]].addwsort(branche[0]);

}

}

Генерация остовного дерева по ПВГ
void SGRAPH::depthOstov(int v0){

if(!NumOfNodes) return;

//preventing running on empty graph

int i;

bool *marked=new bool[NumOfNodes];
//to exclude already marked vertexes

for(i=0;i<NumOfNodes;i++)

marked[i]=false;

SSTACK Stack;

//working stack

SLIST initialVertexes,finalVertexes;

Stack.push(v0);

marked[v0]=true;

//initialization completed, now making depthsearch route

cout<<"Debug information for depthsearch():\n";

while(!Stack.is_empty()){

int p=Stack.pop(); Stack.push(p);
//gettop() analogy

cout<<"p is "<<p<<endl;

int adjListLen=AdjacencyLists[p].getlength();

cout<<"adjListLen is"<<adjListLen<<endl;

int vertex;

for(i=0;i<adjListLen;i++){
//looking for unmarked vertex in
//adjacency list

vertex=AdjacencyLists[p].getelement(i);

cout<<"vertex "<<vertex<<": ";

if(!marked[vertex]) break;

cout<<"marked!\n";

}

cout<<endl;

if(i==adjListLen)

//if no unmarked element was found

Stack.pop();

//moving to previous vertex in stack

else{

initialVertexes.add2end(p);
//fixing initial vertex

finalVertexes.add2end(vertex);

//fixing finishing vertex

marked[vertex]=true;

Stack.push(vertex);

}

if(initialVertexes.getlength()==NumOfNodes-1) break;

//preventing empty iterations

}

//making output:

cout<<"Depthsearch with making spanning tree from vertex "<<v0<<":\n";

initialVertexes.output();

finalVertexes.output();

cout<<"Output completed\n";

//now deleting allocated dynamical memory

delete[] marked;

}

Рекурсивный поиск гамильтонова пути
void SGRAPH::gamilt(int k){//recursive function

int adjListLen=AdjacencyLists[gamiltAnsw[k-1]].getlength();

for(int i=0;i<adjListLen;i++){

int y=AdjacencyLists[gamiltAnsw[k-1]].getelement(i);

if(k==NumOfNodes&&y==gamiltV0){//gamilton cycle found

cout<<"Gamilton cycle found!\n";

for(int j=0;j<NumOfNodes;j++)

cout<<gamiltAnsw[j]<<'-';

cout<<gamiltV0<<endl;

}

else if(!gamiltMarked[y]){

gamiltAnsw[k]=y;

gamiltMarked[y]=true;

gamilt(k+1);

gamiltMarked[y]=false;

}

}

}

void SGRAPH::Gamilton(int v0){//public calling function

if(!NumOfNodes) return;

gamiltMarked=new bool[NumOfNodes];

for(int i=0;i<NumOfNodes;i++) gamiltMarked[i]=false;

gamiltMarked[v0]=true;

gamiltAnsw=new int[NumOfNodes];

gamiltAnsw[0]=gamiltV0=v0;

gamilt(1);

delete[] gamiltAnsw;

delete[] gamiltMarked;

}
Поиск наиболее дешевого остовного дерева алгоритмом Краскла
void SGRAPH::Cruscle(){

//1. create array of branches:

//
a)calculate length of array

//
b)allocate memory

//
c)fill array

struct branche{

int v1,v2,weight;

}*branches;

int m=0;//number of branches in graph = sum of degrees of vertexes div 2

for(int i=0;i<NumOfNodes;i++)

m+=AdjacencyLists[i].getlength();

m/=2;

cout<<"DEBUG: m = "<<m<<endl;

branches=new branche[m];

for(i=0;i<m;i++){

branches[i].v1=-1;

branches[i].v2=-1;

branches[i].weight=rand()%20+1;

}

int bindex=0;

for(i=0;i<NumOfNodes-1;i++){

int v1=i;

for(int j=0;j<AdjacencyLists[i].getlength();j++){

int v2=AdjacencyLists[i].getelement(j);

cout<<"Checking branche ("<<v1<<','<<v2<<"): ";

for(int s=0;s<m;s++)

if((branches[s].v1==v1&&branches[s].v2==v2)
||(branches[s].v1==v2&&branches[s].v2==v1))

break;

 if(s==m){//it's a new branche

cout<<"added\n";

branches[bindex].v1=v1;

branches[bindex++].v2=v2;

}

else cout<<"skipped!\n";

}

}

cout<<"Branche array filled:\n";

for(i=0;i<m;i++)

cout<<branches[i].v1<<'-'<<branches[i].v2<<": "<<branches[i].weight<<endl;

//now sorting branches array by weight:

for(i=0;i<m;i++){

int min=m;

for(int j=m-1;j>=i;j--)

if((branches[min].weight)>(branches[j].weight))

min=j;

branche tmp;

tmp.v1=branches[min].v1;
tmp.v2=branches[min].v2;
tmp.weight=branches[min].weight;

branches[min].v1=branches[i].v1;
branches[min].v2=branches[i].v2;
branches[min].weight=branches[i].weight;

branches[i].v1=tmp.v1;
branches[i].v2=tmp.v2;
branches[i].weight=tmp.weight;

}

cout<<"Branche array sorted:\n";

for(i=0;i<m;i++)

cout<<branches[i].v1<<'-'<<branches[i].v2<<": "<<branches[i].weight<<endl;

//now running Cruscle algoritm:

SLIST Ostov[3],*Partition=new SLIST[NumOfNodes];

for(i=0;i<NumOfNodes;i++)

Partition[i].add2end(i);

int cost=0,len=0;

cout<<"Initialized, starting algoritm...\n";

for(i=0;i<m;i++){

cout<<"STEP "<<i<<"\n============\nPartition:\n";
for(int s=0;s<NumOfNodes;s++) Partition[s].output();

cout<<"Branche: ("<<branches[i].v1<<','<<branches[i].v2<<"), "
 <<branches[i].weight<<endl;

for(int v=0;!Partition[v].findelement(branches[i].v1);v++);
//v indexes element of partition with v1

for(int u=0;!Partition[u].findelement(branches[i].v2);u++);
//u indexes element of partition with v1

cout<<"v = "<<v<<" u = "<<u<<endl;

if(u!=v){

cout<<"adding...\n";

Ostov[0].add2end(branches[i].v1);

Ostov[1].add2end(branches[i].v2);

Ostov[2].add2end(branches[i].weight);

cost+=branches[i].weight;

len++;

Partition[u].absorb(Partition[v]);

}

else cout<<"skipped...\n";

}

cout<<"Ostov created: it costs "<<cost<<"\nAnd consist of branches:\n";

for(i=0;i<len;i++)

cout<<Ostov[0].getelement(i)<<'-'<<Ostov[1].getelement(i)<<": "
 <<Ostov[2].getelement(i)<<endl;

}
